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Abstract—Integrated analysis of temporal behavior for dis-
tributed real-time embedded (DRE) systems is an important
design-time step needed to verify safe and predictable system
operation at run-time. In earlier work, we have shown a Colored
Petri Net-based (CPN) approach to modeling and analyzing
component-based DRE systems. In this paper, we present new
CPN-based modeling approaches and advanced state space
methods that improve on the scalability and efficiency of the
analysis. The generality of the modeling principles used show
the applicability of this approach to a wide range of systems.

Index Terms—component-based, real-time, distributed, colored
petri nets, timing, schedulability, analysis

I. INTRODUCTION

Real-time systems, by definition, must meet operational
deadlines. These deadlines constrain the amount of time per-
mitted to elapse between a stimulus provided to the system
and a response generated by the system. Delayed responses
or missed task deadlines can have catastrophic effects on the
function of the system, especially in the case of safety- and
mission-critical applications. This is the primary motivation for
design-time schedulability analysis and verification of systems.

There is a wealth of existing literature studying real-time
task scheduling theory and timing analysis in uniprocessor
and multiprocessor systems [1], [2]. There are also several
modeling, schedulability analysis and simulation tools [3],
[4], [5], [6] that address heterogeneous challenges in veri-
fying real-time requirements although many such tools are
appropriate only for certain task models, interaction patterns,
scheduling schemes, or analysis requirements. For component-
based architectures, model-based system designs are usually
expressed in formal domain such as timed automata [7], [8],
controller automata [9], high-level Petri nets [10] etc. so
that existing analysis tools such as UPPAAL [11] or CPN
Tools [12] can be used to verify either the entire system or
its compositional parts. But, it is also evident that many of
the existing schedulability analysis tools, though grounded
in theory are not directly applicable to all system designs,
especially with respect to domain-specific properties such as
component interaction patterns, distributed deployment, time-
varying communication networks etc.

To be useful, the analysis tools need to be tightly integrated
with the target domain: the concurrency model used by the sys-
tem. The classic thread-based concurrency model (with generic
synchronization primitives) is too low-level and too generic,
it is hard to use, and hard to analyze. For pragmatic reasons,
more restrictive, yet useful concurrency models are needed
for which dedicated analysis tools can be developed. Our
previous efforts [13] were directed at this challenge. The target
domain for that study was the DREMS component model [14]
which is the foundation of a software infrastructure addressing
challenges in the design, development and deployment of
component-based flight software for fractionated spacecraft.
The physical nature of such systems require strict, accurate and
pessimistic timing analysis at design-time to avoid catastrophic
situations. DREMS is implemented as a design-time tool
suite and a run-time software platform that is enhanced by a
component (concurrency) model with well-defined execution
semantics. The platform relies on a temporally partitioned
task scheduling scheme, a non-preemptive component-level
operations scheduler, support for various communication and
interaction patterns; all deployed on a distributed hardware
platform.

Our contributions in this paper target efficient modeling and
analysis techniques of temporal behavior for component-based
applications that form distributed real-time embedded systems,
such as DREMS.

1) We present an approach for modeling the ’business
logic’: the operational behavior of each component in an
application. The model uses a sequence of timed steps
that are executed by a component operation, including
steps the include interactions with other components.
This approach enables abstracting the details of the
middleware, while representing the temporal behavior
of the component business logic.

2) We also present improvements to the CPN-based mod-
eling approach that enables better analysis performance
and scalability. These rely on heuristics that manage time
variables and state space data structures more efficiently.

3) We also present advanced state space analysis methods



and tools applied on the modeled system to reduce
analysis time on medium to large-scale systems.

The rest of this paper is organized as follows. Section
II presents related research, reviewing and comparing exist-
ing analysis tools and formal methods. Sections III briefly
describes the DREMS architecture, specifically the concepts
of interest that are covered by the timing analysis tool.
Section IV describes the business logic modeling approach
to capture the operational behavior of components in the
application. Section V describes the analysis improvements we
were able to achieve with structural changes to the analysis
model. This section also briefly describes the application of
advanced state space analysis methods that enable efficient
state space searches while reducing the state space size and
overall memory consumption. Section VI evaluates possible
extensions to this work before concluding with Section VII.

II. RELATED RESEARCH

Verification of component-based systems require significant
information about the application assembly, interaction se-
mantics, and real-time properties. This information is primar-
ily derived from the design model although many real-time
metrics are not explicitly modeled. Using model descriptors,
[15] describes interaction semantics and real-time properties of
components. Using the MAST modeling and analysis frame-
work [3], [16], schedulability analysis and priority assignment
automation is supported. Event-driven models are separated
into several views which are similar to hierarchical pages
in CPN. Analysis efforts include the calculation of response
times, blocking times and slack times.

High-level Petri nets are a powerful modeling formalism
for concurrent systems and have been integrated into many
modeling tool suites for design-time verification. General-
purpose AADL models have been translated into Symmetric
nets for qualitative analysis [17] and Timed Petri nets [18]
to check real-time properties such as deadline misses, buffer
overflows etc. Similar to [18], our CPN-based analysis also
uses bounded observer places [19] that observe the system
behavior for property violations and prompt completion of
operations. However, [18] only considers periodic threads in
systems that are not preemptive. Our analysis is aimed at a
combination of preemptive and non-preemptive hierarchical
scheduling with higher-level component interaction concepts.
separately.

Several analysis approaches present tool-aided methodolo-
gies that exploit the capabilities of existing analysis and veri-
fication techniques. In the verification of timing requirements
for composed systems, [20] uses the OMG UML Profile for
Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) modeling standard and converts high-level design
into MAST output models for concrete schedulability analysis.
In a similar effort, AADL models are translated into real-
time process algebra [21] reducing schedulability analysis into
a deadlock detection problem searching through state spaces
and providing failure scenarios as counterexamples. Symbolic
schedulability analysis has been performed by translating the

task sets into a network timed automata, describing task arrival
patterns and various scheduling policies. TIMES [5] calculates
worst-case response times and scheduling policies by verifying
timed automata with UPPAAL [11] model checking.

In order to analyze hierarchical component-based systems,
the real-time resource requirements of higher-level compo-
nents need to be abstracted into a form that enables scal-
able schedulability analysis. The authors in [22] present an
algorithm where component interfaces abstract the minimum
resource requirements of the underlying components, in the
form of periodic resource models. Using a single composed
interface for the entire system, the component at the higher
level selects a value for operational period that minimizes the
resource demands of the system. Such refinement is geared
towards minimum waste of system resources.

III. BACKGROUND

The target architecture for timing analysis is DREMS [23],
[14]. DREMS was designed and developed for a class of
distributed real-time embedded systems that are remotely
managed and have strict timing requirements. DREMS is a
software infrastructure for the design, implementation, de-
ployment, and management of component-based real-time
embedded systems. The infrastructure includes design-time
modeling tools [24] that integrate with a well-defined and
fully implemented component model [25], [13] used to build
component-based applications. Rapid prototyping and code
generation features coupled with a modular run-time plat-
form automate tedious aspects of software development and
enable robust deployment and operation of mixed-criticality
distributed applications. The formal modeling and analysis
method presented in this paper focuses on applications built
using this foundational architecture.

A. Component Operations Scheduler

DREMS applications are built by assembling and compos-
ing re-useable units of functionality called Components. Each
component is characterized by a (1) set of communication
ports, a (2) set of interfaces (accessed through ports), a (3)
message queue, (4) timers and state variables. Components in-
teract via publish/subscribe and synchronous or asynchronous
remote method invocation (RMI and AMI) services provided
by the middleware. Each component interface exposes one
or more operations that can be invoked due to the arrival
of a message or a method invocation or the expiration of a
timer. Every operation request coming from an external entity
reaches the component through its message queue. This is
a priority queue maintained by a component-level scheduler
that schedules operations for execution. When ready, a single
component executor thread per component will be released
to execute the operation requested by the front of the compo-
nent’s message queue. The operation runs to completion, hence
component execution is always single-threaded. Note however
that the multiple components can be executed concurrently.



B. Operating System Scheduler

DREMS components are grouped into processes that may
be assigned to ARINC-653 [26] styled temporal partitions,
implemented by the DREMS operating system scheduler.
Temporal partitions are periodic, fixed intervals of the CPU’s
time. Threads associated with a partition are scheduled only
when the partition is active. This enforces a temporal isolation
between threads assigned to different partitions and assigns
a guaranteed slice of the CPU’s time to that partition. The
repeating partition windows are called minor frames. The
aggregate of minor frames is called a major frame. The
duration of each major frame is called the hyperperiod, which
is typically the lowest common multiple of the partition
periods. Each minor frame is characterized by a period and
a duration. The duration of a partition defines the amount of
time available per hyperperiod to schedule all threads assigned
to that partition. Each node in a network runs an OS scheduler,
and the temporal partitions of the nodes are assumed to be
synchronized, i.e. all hyperperiods start at the same time.

C. Colored Petri Nets

Petri Nets [27] are a graphical modeling tool used for
describing and analyzing a wide range of systems. A Petri
net is a five-tuple (P, T,A,W,M0) where P is a finite set
of places, T is a finite set of transitions, A is a finite set of
arcs between places and transitions, W is a function assigning
weights to arcs, and M0 is the initial marking of the net. Places
hold a discrete number of markings called tokens. Tokens often
represent resources in the modeled system. A transition can
legally fire when all of its input places have necessary number
of tokens.

With Colored Petri Nets (CPN) [28], tokens contain values
of specific data types called colors. Transitions in CPN are
enabled for firing only when valid colored tokens are present
in all of the typed input places, and valid arc bindings are
realized to produce the necessary colored tokens on output
places. The firing of transitions in CPN can check for and
modify the data values of these colored tokens. Furthermore,
large and complex models can be constructed by composing
smaller sub-models as CPN allows for hierarchical description.

1) The Choice of Colored Petri Nets: One of the primary
reasons for choosing Colored Petri Nets over other high-
level Petri Nets such as Timed Petri Nets or other modeling
paradigms like timed automata is because of the powerful
modeling concept made available by token colors. Each col-
ored token can be a heterogeneous data structure such as a
record that can contain an arbitrary number of fields. This
enables modeling within a single color-set (C-style struct)
system properties such as temporal partitioning, component
interaction patterns, and even distributed deployment. The
token colors can be inspected, modified, and manipulated by
the occurring transitions and the arc bindings. Component
properties such as thread priority, port connections and real-
time requirements can be easily encoded into a single colored
token, making the model considerably concise. In Section V,

we will discuss in more detail how some of the modeling con-
cepts/changes we have made affect and improve the efficiency
of analysis.

IV. MODELING TEMPORAL BEHAVIOR

The execution of component operations service the various
periodic or aperiodic interaction requests coming from either
a timer or other connected (possibly distributed) components.
Each operation is written by an application developer as
a sequence of execution steps. Each step could execute a
unique set of activities, e.g. perform a local calculation or a
library call, initiate an interaction with another component,
process a response from external entities, and it can have
data-dependent, possibly looping control flow, etc. The be-
havior derived by the combination of these steps contribute
to the worst-case execution of the component operation. The
behavior may include non-deterministic delays due to com-
ponent interactions while being constrained by the temporally
partitioned scheduling scheme and hardware resources. This
section briefly describes the various aspects of this behavior
specification that are general enough to be applicable to a
range of component-based systems.

Fig. 1: Modeling the Business Logic of Component Operations

Figure 1 shows the Extended Backus-Naur form represen-
tation of the grammar used for modeling the business logic of
component operations. The symbol ID represents identifiers, a
unique grouping of alphanumeric characters/terminal symbols
and the symbol INT represents positive integer digits. Each
operation is characterized by a unique name, a priority and a
deadline. The priority is an integer used to resolve scheduling
conflicts between operations provided by the same compo-
nent when requests from external entities are received. The
arbitration is handled by the component-level scheduler. The
deadline of the operation is the worst-case amount of time
that can elapse after the operation is marked as ready. The
business logic of every component operation is modeled as
a sequence of functional steps, each with an assigned worst-
case execution time. We broadly classify these steps into (1)
blocks of sequential code, (2) peer-to-peer synchronous and
asynchronous remote calls, (3) anonymous publish/subscribe



distribution service calls, (4) blocking and non-blocking I/O
interactions and (5) bounded control loops.

Notice the integration of timing properties such as worst-
case function call times (query_time), worst-case argument
processing times (processing_time) and DDS publish times
(publish_time). If these expected delays are set to zero, the
analysis will execute these interactions in a single synchronous
step taking no time. However, in reality these steps still take a
non-zero amount of time to execute. Therefore, if such metrics
are not known then these values can be set to zero and an
overall worst-case execution time can be set per operation.
This is the maximum amount of time that can elapse after
the component operation has begun to execute. This time will
include all component interactions and network delays that
affect the operation’s execution.

V. ANALYSIS TECHNIQUES

A. Handling Time

The CPN-based analysis consists of executing a simulation
of the model and constructing a state space data structure for
the system (for a finite horizon), and then performing queries
on this data structure. This is automated by CPN Tools. The
first improvement over the basic CPN approach is in how
we handle time. Although it is true that CPN and similar
extensions to Petri Nets such as Timed Petri Nets inherently
have modeling concepts for simulation time, we explicitly
model time as an integer-valued clock color token in CPN.
There are several reasons for this choice.

Firstly, this is an extension to our previous arguments about
choosing Colored Petri Nets. Modeling the OS scheduler
clock as a colored token allows for extensions to its data
structure such as (1) intermediate time stamps and internal
state variables, and (2) adding temporal partitioning schemes
like the (time-partitioned) ARINC-653 [26] scheduling model
(Figure 2). These extended data structure fields can be more
easily manipulated and used by the model transitions during
state changes, allowing for richer modeling concepts that
would not be easily attainable using token representations
provided by Timed Petri Nets. The ability to pack colored
tokens with rich data structures also reduces the total number
of colors required by the complete model. This quantitative
measure directly influences the reduced size of the resultant
state space. The downside of this approach to modeling is that
we have to choose a time quantum. But in practical systems
this is usually not a problem, as the low-level scheduling
decisions are taken by an OS scheduler based on a time scale
with a finite resolution. We have chosen 1 msec as the quantum
(corresponding to the typical 1KHz scheduler in Linux), but
it can be easily changed.

Fig. 2: A Clock Token with Temporal Partitioning

Secondly, modeling time as a token allows for smarter time
progression schemes that can be applied to control the pace

of simulation. If we did not have such control over time, the
number of states recorded for this color token would eventually
explode and itself contribute to a large state space. In order
to manage this complexity, we have devised some appropriate
time jumps in specific simulation scenarios.

If the rate at which time progresses does not change, then for
a 1 msec time resolution, S seconds of activity will generate

a state space of size: SSsize =
S∗1000∑
i=1

TFti where TFti is

the number of state-changing CPN transition firings between
ti and ti+1. This large state space includes intervals of time
where there is no thread activity to analyze either due to lack of
operation requests, lack of ready threads for scheduling, or due
to temporal partitioning. During such idle periods, it is prudent
to allow the analysis engine to fast-forward time either to (1)
the next node-specific clock tick, (2) the next global timer
expiry event, or (3) the next activation of the node-specific
temporal partition (whichever is earliest and most relevant).
This ensures that the generated state space tree is devoid of
nodes where there is no thread activity.

Fig. 3: Dynamic Time Progression

Figure 3 illustrates these time jumps using 4 scenarios.
Assuming the scheduler clock ticks every 4 msec, Case 1
shows how time progression is handled when an operation
completes 2 msec into its thread execution. At time t, the
model identifies the duration of time left for an operation to
complete. If this duration is earlier than the next preempt
point, then there is no need to progress time in 1 msec
increments as no thread can preempt this currently running
thread till time t + 4 msec. Therefore, the clock_value in Figure
2 progresses to time t + 2 msec, where the model handles
the implications of the completed operation. This includes
possibly new interactions and operation requests triggered in
other components. Then, time is forced to progress to the next
preempt point where a new candidate thread is scheduled. This
same scenario is illustrated in Case 2 when the time resolution
is increased to 100 usec instead of 1 msec. Notice that the
number of steps taken to reach the preempt point are the same,
showing how the state space doesn’t have to explode simply
because the time resolution is increased. Case 3 illustrates the
scenario where at time t, the scheduler has no ready threads



to schedule since there are no pending operation requests but
at time t + 3 msec, a component timer expires, triggering
an operation into execution. Since timers are maintained in
a global list, each time the Progress_Time transition checks
its firing conditions, it checks all possible timers that can
expiry before the next preempt point. So, at time t when
no threads are scheduled, the model immediately jumps to
time t + 3. This scenario also shows that if the triggered
operation does not complete before the preempt point and
there are no other ready threads or timer expiries that can be
scheduled, the clock value jumps to the operation completion.
It must be noted here that this case is valid only because
the DREMS architecture we have considered uses a non-
preemptive operation scheduling scheme. Lastly, Case 4 shows
time jumps working with temporal partitioning. At some time
t + x, the model realizes the absence of ready threads and does
not foresee any interaction requests from other components,
then it safely jumps to the end of the partition without stepping
forward in 1 msec increments. This time progression directly
shows how the state space of the system execution reduces
while still preserving the expected execution order, justifying
our choice of modeling time as a colored token using CPN.

B. Distributed Deployment

The second structural change to the analysis model is in
how distributed deployments are modeled and simulated. Early
designs on modeling and analysis of distributed application
deployments [13] included a unique token per CPN place for
each hardware node in the scenario. Since the individual node
tokens are independent and unordered, there is a nondetermin-
ism in the transition bindings when choosing a hardware node
to schedule threads in. For instance, if there are 2 hardware
nodes in the deployment with ready threads on both nodes,
then either node can be chosen first for scheduling threads
leading to two possible variations of the model execution trace.
Therefore the generated state space would exponentially grow
for each new hardware node. In order to reduce this state
space and improve the search efficiency, we have merged
hardware node tokens into a single list of tokens instead
of a unassociated grouping of individual node tokens. This
approach is inspired by the symmetry method for state space
reduction [29].

Figure 4 illustrates this structural reduction. Consider a
distributed deployment scenario with an instance of a DREMS
application deployed on each hardware node, Sat1 through
Sat6. Components Comp1 and Comp2 are triggered by timers,
eventually leading to the execution of component operations
(modeled as shown in Figure 1). If all the timer tokens in the
system were modeled individually, the transition Timer_Expiry
would non-deterministically choose one of the two timer
tokens that are ready to expire at t=0. However, if the timers
are maintained as a single list, then this transition (1) consumes
the entire list, (2) identifies all timers that are ready to expire,
(3) evaluates the timer expiration function on all ready timers,
(4) propagates the output operation tokens to the relevant
component message queues in a single firing. This greatly

Fig. 4: Structural Reductions in CPN

reduces the tree of possible transition firings and therefore
the resultant state space. Also, if there is no non-determinism
in the entire system, i.e., there is a distinct ordering of thread
execution, then this model can be scaled up with instantiating
the application on new hardware nodes with no increase in
state space size. This is because all of the relevant tokens on
all nodes are maintained as a single list that is completely
handled by a single transition firing.

An important implication to the above structural reduction
is that the simulation of the entire system now progresses in
synchronous steps. This means that at time 0, all the timers
in all hardware nodes that are ready to expire will expire in a
single step. Following this, all operations in all component
message queues of all these nodes are evaluated together
and appropriate component executor threads are scheduled
together. When these threads execute, time progresses as
described in Section V-A, moving forward by the minimum
amount of time that can be fast-forwarded.

C. Advanced State Space Analysis Methods

State space analysis techniques have been successfully ap-
plied with Colored Petri Nets in a variety of practical scenarios
and industrial use cases [30], [31]. The basic idea here is to
compute all reachable states of the modeled concurrent system
and derive a directed graph called the state space. The graph
represents the tree of possible executions that the system can
take from an initial state. It is possible from this directed
graph to verify behavioral properties such as queue overflows,
deadline violations, system-wide deadlocks and even derive
counter examples when arriving at inconsistent states.



The variety of CPN-specific state space reduction techniques
[32], [33] developed in recent times has significantly broad-
ened the class of systems that can be verified. In order to
easily apply such techniques to our analysis model, we use
the ASAP [34] analysis tool. The tool provides for several
search algorithms and state space reduction techniques such as
the sweep-line method [35] which deletes already visited state
space nodes from memory, forcing on-the-fly verification of
temporal properties. The main advantage of such a technique
is the amount of memory required by the analysis to verify
useful properties for large models.

The sweep line method for state space reduction is used
to check for important safety properties such as lack of
deadlocks, timing violations etc. using user-defined model-
specific queries. Practical results enumerated in [35] show im-
provements in time and memory requirements for generating
and verifying bounded state spaces. The method relies of dis-
carding generated states on-the-fly by performing verification
checks during state space generation time. Any state that does
not violate system properties can be safely deleted. Another
advantage of this method of similar reduction methods such
as bit-state hashing [36] is that a complete state space search
is guaranteed.

In order to illustrate the utility of such state space re-
duction techniques, we consider a large-scale deployment.
Figure 5 shows the generated CPN model for a domain-
specific DREMS application. This is a scaled-up variant of
several satellite cluster examples we have used in previous
publications [14], [13]. The example consists of a group of
communicating satellites hosting DREMS applications. The
component assembly for this application consists of 100
interacting components distributed across 10 computing nodes,
many of which are triggered by infrastructural timers. Notice
in Figure 5 how there is only one token in each of the main
CPN places, as described in Section V-B. All of the component
timers are appended to the list maintained in Timers place.
Similarly, all node-specific clock tokens are maintained in
place Clocks.

At time t=0, before the simulation is kicked off, the tran-
sition Establish_Order generates the non-deterministic set of
thread execution orders that are possible given the configura-
tion of the clock token. This may be a potentially large set
depending on the number of threads of equal priority in each
partition. Once this tree of possible orders is established, the
complete set of timers that are ready to expire are evaluated.
Each timer expiry manifests as an operation request and
each callback operation modeled using the grammar shown in
Figure 1. Once the operations are ready to execute, the highest
priority component thread with a pending operation request is
chosen for execution. This thread scheduling happens on all
hardware nodes. When each thread executes, new interactions
may occur as a consequence of the execution. For instance, if
a component thread executes a timer operation in which the
component publishes on a global topic, the consequence of
this action would include a set of callback operation requests
on all components that contain subscribers to that global

topic. Lastly, all running threads are evaluated to identify the
minimum amount of time that can be safely fast-forwarded in
each node. If the running component threads are independent
or symmetrical, then the maximum possible time progression
is up to the end of the temporal partition. Note here that
temporal partition in the deployment can be set to an empty
list which simply removes the partitioning constraint and treats
all component threads on a node as candidate threads for
execution. The above sequence of transitions repeat for as long
as there is a timer expiry, a pending operation request or an
unfinished component interaction.

Fig. 6: Sweep-Line Method

Using the CPN Tools in-built state space analysis tool, a
bounded state space was generated reaching up-to 20 hyper-
periods of component thread activity. This bounded generation
took 36 minutes on a typical laptop. Our goal with such an
example is to evaluate the effectiveness and utility of state
space reduction techniques with respect to speed and memory
usage. Figure 6 shows a simple block diagram of the sweep-
line method as configured in ASAP. Performing on-the-fly
verification checks for lack of dead states in the analysis
model, results indicate lack of system-wide deadlocks due to
blocking behaviors triggered by RMI-style synchronous peer-
to-peer interaction patterns. Figure 7 shows analysis results
obtained from a Verification Job executed in the tool. Notice
the on-the-fly verification taking less than 10 minutes to
perform deadlock checks on this sample deployment. Using
the Palette in ASAP, several standard ML (SML) user queries
can be created to check for domain-specific properties.

It must be noted here that this improved result is not only
because of the efficient state space search but also because of
symmetry-based structural reduction discussed in Section V-B.
If not for this reduction, the state space search requirements
would exponentially grow for each new hardware node added
to the deployment.

D. Discussion

1) Conservative Results: Using estimates of worst-case
execution time for component operations is motivated by the
need to make exaggerated assumptions about the system be-
havior. Pessimistic estimates are a necessary requirement when
verifying safety-critical DRE systems. Schedulability analysis
with such assumptions should provide strictly conservative



Fig. 5: Generated CPN model for a Distributed Application Deployment

Fig. 7: Dead States Checking in a Component-based application

results. This means that (1) if the analysis results show the
possibility of a deadline violation but the deployed system
does not, the obtained result is a conservative one as it assumes
worst-case behavior, and (2) if the analysis results do not
show any timing violations but the deployed system violates
response time requirements, deadlines etc., then the analysis
does not provide a conservative result and has failed to verify
system behavior.

In order to guarantee conservative results, the analysis must
include worst-case behaviors of all system-level threads that
run at higher priority than component threads and are not
necessarily modeled by the design-time tools. In our analysis,
these threads are grouped into a set of critical processes with
approximations made to simulate the behavior of system-
level threads such as (1) globally periodic CPU utilization,
(2) CPU utilization for some WCET per partition. The best
approximation is chosen based on the expected behavior of
such critical processes. Best-effort processes are ignored as
they always run at a priority lower than the lowest-priority
component thread.

VI. FUTURE WORK

The DREMS component communication is facilitated by a
time-varying network. The bandwidth provided by the system
therefore predictably fluctuates between a minimum and a
maximum during the orbital period of the satellites. Currently,
our analysis associates each operational step with a fixed
worst-case network delay. We are working on introducing
places in the CPN model that capture the network profile of a
deployment so that the communication delays during queries
vary with time leading to tighter bounds on predicted response
times.

Secondly, we are also investigating the utility of this ap-
proach for fault-tolerant and self-adaptive systems. Integrating
this analysis with a run-time resilience engine, configuration
changes determined by a fault mitigating solver can be sub-
sequently checked for timing anomalies before settling on a
specific reconfiguration strategy.

VII. CONCLUSIONS

Mobile, distributed real-time systems operating in dynamic
networking environments, and running mission-critical appli-
cations must still satisfy strict timing requirements to operate
safely. To reduce the development and integration complexity
for such systems, component-based design models are being
increasingly used. Appropriate analysis models are required to
study the structural and behavioral complexity in such designs.

This paper presented new Colored Petri net-based modeling
approaches to capture the architecture and temporal behavior
of such component-based applications for both qualitative and
quantitative schedulability analysis. The key idea behind the
analysis is the precise modeling of the component execution
semantics in the analysis tool. The analysis method is modular,
extensible and intuitive and there are sufficient support tools to
enable state space analysis and verification for medium to large



size design models. We investigated the utility of structural
reduction and advanced state space analysis techniques in
order to realize a more efficient and scalable analysis.
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